

CC Mixed ceramic, coated

CN Si3N4 Ceramic

CR Al2O3 cutting ceramic, reinforced

Technical Information

Α

Turning

В

Milling

С

Drilling

D

System code 🔪 A198

Grade selection A42

Technical info A501

Cutting data 🔪 A366

Positive inserts

Ρ

Turning

B

Milling

С

Drilling

D

Technical Information

Ε

Index

Α Application Chip breaker **Application fields** Cutting edge design ap [mm] 4.0 0.05 3.0 2.0 \bigcirc SF Fine-finishing 1.0 T f [mm/r] 0 0.1 0.2 0.3 0.4 0.5 ap [mm] 4.0 0.11 3.0 6° **≰** 2.0 \mathfrak{S} \bigcirc HF Finishing 1.0 f [mm/r] 0 0.1 0.2 0.3 0.4 0.5 ap [mm] 4.0 0.13 3.0 2.0 14 AHF Finishing 3 \bigcirc 1.0 - - - - f [mm/r] 0 0.1 0.2 0.3 0.4 0.5 ap [mm] 4.0 3.0 18 2.0 \mathfrak{S} \bigcirc XF Finishing 1.0 0 f [mm/r] 0.1 0.2 0.3 0.4 0.5 ap [mm] 4.0 3.0 0.12 2.0 \mathfrak{S} ΗМ Medium machining \bigcirc 1.0 0 f [mm/r] 0.1 0.2 0.3 0.4 0.5 ap [mm] 4.0 0.1 3.0 ----2.0 \mathfrak{S} ΧМ Medium machining \bigcirc 1.0 f [mm/r] 0 0.1 0.2 0.3 0.4 0.5 ap [mm] 6.0 0.17 4.5 3.0 15° \mathfrak{S} HR Roughing \bigcirc 1.5 f [mm/r] 0

0.1 0.2 0.3 0.4 0.5

Application fields of chip breakers General turning

P Ne	P Negative inserts							
Chip breaker	Applicatio	on	Application fields	Cutting edge design				
SF	Fine-finishing	\circ	ap [mm] 5.0 4.0 3.0 	8° 0.1	Irning			
DF	Finishing	0 😵	ap [mm] 5.0 4.0 	12° 0.07	μ μ			
XF	Finishing	0 😵	ap (mm) 5.0 4.0 2.0 1.0 0 1.0 0 1.0 0 1.0 0 1.0 0 1.0 0 1.0 0 1.0 0 1.0 0 1.0 0 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.07	B			
ADF	Finishing	0 3	ap [mm] 5.0 4.0 2.0 0.1 0.2 0.3 0.4 0.5 0.6	8°	Milling			
DM	Medium machining	0	ap [mm] 5.0 4.0 3.0 2.0 1.0 0.1 0.2 0.3 0.4 0.5 0.6	7° 0.12	С			
РМ	Medium machining	0 & *	ap [mm] 5.0 4.0 3.0 1.0 0.1 0.2 0.3 0.4 0.5 0.6	6° 0.25 6° 0.08	rilling			
ZM	Medium machining		ap [mm] 5.0 4.0 3.0 	0.25 6° 0.08				
хм	Medium machining	0 8	ap (mm) 5.0 4.0 3.0 	0.15	D			
WG	Medium machining	0 🔅	ap [mm] 5.0 4.0 3.0 2.0 1.0 0.1 0.2 0.3 0.4 0.5 0.6	10°	Technical Informatio			
Basic	Medium machining	0 🕄	ap [mm] 5.0 4.0 2.0 1.0 0.1 0.2 0.3 0.4 0.5 0.6	27°	Е			
DR	Roughing	0 🕄 🎇	ap (mm) 15.0 9.0 6.0 3.0 0 0.2 0.4 0.6 0.8 1.0 1.2 f [mm/r]	19° 0.1	ndex			

P Negative inserts

Α

Turning

В

Milling

С

Drilling

D

Technical Information

Ε

Index

Chip breaker	Applicatio	on	Application fields	Cutting edge design
DR (single sided)	Roughing	0 😚 🎇	ap (mm) 15.0 9.0 	5° (0.1
LR (single sided)	Roughing	0 😚 🎇	ap (mm) 15.0 9.0 	22°
HDR (single sided)	Roughing	0 😚 🎇	ap (mm) 15.0 9.0 	0.46 11° - 0.24
HPR (single sided)	Roughing	0 😚 🎇	ap (mm) 15.0 12.0 9.0 	0.46

P Negative inserts (rail technology)

Chip breaker	Applicatio	n	Application fields	Cutting edge design
RF	Finishing	\bigcirc	ap (mm) 15.0 9.0 	0.35
RH	Roughing	0 😚 🎇	ap [mm] 15.0 9.0 	4°

Chip breaker	Application		Application fields	Cutting edge design
тс	Medium machining	0	ap [mm] 4.0 3.0 	15°
Flat	Roughing	0 83	ap (mm) 4.0 3.0 1.0 0.1 0.2 0.3 0.4 0.5 f [mm/r]	

Negative inserts

Κ

Chip breaker	Applicatio	on		Application fields	Cutting edge design
тк	Medium machining	○ ↔		ap [mm] 5.0 4.0 3.0 	22°
тс	Medium machining	0		ap [mm] 5.0 4.0 3.0 	15°
Flat	Roughing	0	51/2	ap [mm] 5.0 4.0 3.0 	

Α

Turning

В

Milling

С

Drilling

D

Technical Information

Ε

M Positive inserts

Chip breaker	Applicatio	on	Application fields	Cutting edge design
USF	Fine-finishing	\bigcirc	ap (mm) 4.0 3.0 1.0 0.1 0.2 0.3 0.4 0.5 f (mm/r)	13°
EF	Finishing	○ 😚	ap [mm] 4.0 3.0 1.0 0.1 0.2 0.3 0.4 0.5 f [mm/r]	5° (
EM	Medium machining	○ 🛟 🎇	ap [mm] 4.0 3.0 2.0 1.0 0.1 0.2 0.3 0.4 0.5 f [mm/r]	13° (0.1

Milling

С

Drilling

D

Technical Information

Α

Turning

В

M Negative inserts

Chip breaker	Applicatio	on	Application fields	Cutting edge design
EF	Finishing	\bigcirc	ap [mm] 5.0 4.0 3.0 2.0 1.0 0.1 0.2 0.3 0.4 0.5 0.6	9°
EM	Medium machining	○ ↔	ap [mm] 5.0 4.0 3.0 	8°
EG	Medium machining	○ ↔	ap [mm] 5.0 4.0 3.0 2.0 1.0 0.1 0.2 0.3 0.4 0.5 0.6 f[mm/r]	16° 0.5
ER	Roughing	○ ↔ ॐ	ap [mm] 5.0 4.0 3.0 	6° 0.1
ER (single sided)	Roughing	○ ↔ ॐ	ap [mm] 15.0 12.0 9.0 	0.34 19° 0.3

Ε

hip breaker	Applic	ation	Application fields	Cutting edge design
NF	Finishing	0	ap [mm] 4.0 3.0 1.0 0 0.1 0.2 0.3 0.4 0.5	12°
NGF	Finishing	○ ↔	ap [mm] 4.0 3.0 2.0 1.0 0 0 1.0 0 1.0 0 1.0 0 1.0 0 1.0 0 1.0 0 1.0 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0	10° 10°
SNR	Roughing		ap [mm] 6.0 4.5 3.0 1.5 0 0 1.02 0.3 0.4 0.5	7° (0.15

Chip breaker	Applicatio	on	Application fields	Cutting edge design
NF	Finishing	\bigcirc	ap [mm] 5.0 4.0 	11°
NGF	Medium machining	● 🛟	ap [mm] 5.0 4.0 	15°
NM	Medium machining	•	ap [mm] 5.0 4.0 	0.14 15°
SNR	Roughing	•	ap [mm] 5.0 4.0 2.0 1.0 0.1 0.2 0.3 0.4 0.5 0.6	15° (0.23

С

Drilling

D

Technical Information

Α

Turning

В

Milling

С

Drilling

Technical Information

Ε

Index

Positive inserts

Chip breaker	Applicatio	'n	Application fields	Cutting edge design
LC	Finishing	\bigcirc	ap [mm] 5.0 4.0 3.0 1.0 0 0.1 0.2 0.3 0.4 0.5 0.6 f [mm/r]	23°
LH	Finishing	\bigcirc	ap [mm] 5.0 4.0 2.0 1.0 0.1 0.2 0.3 0.4 0.5 0.6	16°

Λ	Coated c	Coated cemented carbide CVD				
A	Grade	ISO	Micro structure	Grade description		
Turning	YBC103	P05 – P15		P10 grade with excellent wear resistance at higher cutting speeds. Latest sinter processes and CVD coating technologies enable a wide range of applications in the P material range.		
В	YB6315	P05 – P20		CVD coated P10–P20 carbide grade for finishing to medium operation of steel, casting steel and high chrome material. Outstanding performance under high cutting speed and temperature with excellent wear resistance.		
Milling	YBC152	P10 – P20		CVD coated P10–P20 carbide grade for finishing to medium operation of steel and casting steel. Outstanding performance under higher cutting speed and temperature with excellent wear resistance.		
C	YBC203	P15 – P25		P20 grade with exceptional wear resistance and toughness for reliable machining operations. Ultra-modern sintering technique and CVD coating technologies allow for a wide range of applications in the P material range.		
Drilling	YBC252	P20 - P35		CVD coated P20–P35 carbide grade for medium operation to roughing of steel and casting steel. Optimal performance of wear resistance and toughness for a wide application field.		
hnical mation	YBC352	P20 - P40		CVD coated P20–P40 carbide grade for roughing operation of steel and casting steel. Optimal performance of wear resistance and toughness for a wide application field.		
L Inform	YBM153	M10 - M25		CVD coated M10–M25 carbide grade for finishing to medium application in stainless steel. High wear resistance and capability against plastic deformation at higher cutting speed.		
Index	YBM253	M15 - M35		CVD coated M15–M35 carbide grade for medium to roughing operation in stainless steel with wide application field. High wear resistance and capability against plasctic deformation at higher cutting speed.		

Grade	ISO	Micro structure	Grade description	
YBD102	K05 - K20		CVD coated K05–K20 carbide substrate. Optimized for medium operation of cast iron, special nodular cast iron and hard steel at high cutting speed.	Turning
YB7315	K10 - K25		CVD coated K10–K25 carbide substrate. Optimized for medium to roughing operation of cast iron. Improved wear resistance and toughness at high cutting speed.	B
YBD152	K10 - K25		CVD coated K10–K25 carbide substrate. Optimized for medium to roughing operation of cast iron. Good wear resistance and toughness at higher cutting speed.	Millina
YBD152C	K10 - K25		Thick Al2O3 CVD coated K05–K25 carbide substrate. Optimized for medium to roughing operation of cast iron. Higher wear resistance and toughness at higher cutting speed in combination with TC chip breaker.	C
Castada				Drilling

Coated cemented carbide CVD

Coated cemented carbide PVD

Grade	ISO	Micro structure	Grade description
YBG101	N05 - N20		PVD coated N05–N20 carbide substrate for finishing to semi-finishing in aluminium materials. Coating only on the top face, in combination with the aluminium chip breakers, prevents built-up edges and gives a smooth cut.
YBG102	S05 - S15		PVD coated S05–S15 carbide substrate for finishing to medium application of super alloy material, stainless steel and aluminum. Good wear resistance in a wide application field.
YBG105	S05 - S20		PVD multilayer coated S05–S20 carbide substrate for finishing to medium application of super alloy material but also stainless steel. Good wear resistance and thermal stability in a wide application field.

D

Technical Information

Ε

Coated cemented carbide PVD

Α

Turning

В

Milling

С

Drilling

Grade	ISO	Micro structure	Grade description
YBG205	P10 - P30 M20 - M40 S15-S25		PVD multilayer coated P10–P30/M20–M40/S15–S25 carbide substrate for finishing to medium machining of stainless steel, super alloys and steel (milling). Excellent wear resistance and thermal stability in a wide range of applications.
YB9320	P10 - P30 M10 - M25		PVD multilayer coated P10–P30/M10–M25 carbide substrate for finishing to medium machining of stainless steel, super alloys and steel (grooving/milling). Optimised coating stability for higher wear resistance and thermal stability in a wide range of applications.
YPD201	S20 – S30	Ĩ	Carbide grade for semi-roughing to chip breaking of high-strength and high-alloy materials. High-performance grade with high wear resistance. Balanced hardness and internal stress ratio provide a wide range of applications.
YBS103	S10 – S20	ž	Turning grade for processing nickel-base materials. A special carbide substrate and the latest PVD coating technology enable a very good wear behaviour and high thermal stability.

Ceramic

	Grade	ISO	Micro structure	Grade description
D a	CA1000	K10 - K25 H10 - H25		Uncoated H10–H25/K10–K25 mixed ceramic grade for finishing to medium operation in hardened steel and nodular cast iron. Good wear resistance and toughness.
Technic Informati	CM1000	K10 - K25 H10 - H25		Coated H1–H25/K10–K25 mixed ceramic grade for finishing to medium operations in hardened steel, tool steel, HSS material and nodular cast iron. Good wear resistance and toughness.
Index	CN1000	K05 - K15		Uncoated K05-K15 Si3N4 ceramic grade for finishing to medium operation in grey cast iron. Good wear resistance and thermal stability.

~			•
$(\cap$	20	\mathbf{n}	10
	10		

Grade	ISO	Micro structure	Grade description	A
CS1000	S05 – S20		Uncoated SiAION ceramic grade for medium machining to roughing of nickel- and cobalt- based alloys at medium to low cutting speeds.	Turning
CW1400	S10 – S20 H10-H20		Uncoated whisker ceramic grade for medium and low speed cutting in HSS steel, high chrome steel and cobalt-base alloy also with interrupted cut. Good wear resistance, notch wear resistance and thermal stability.	В
CW1800	S10 – S25		Uncoated whisker ceramic grade for finishing to rough operations in Ni-base alloy material like Inconel, Nimonic or Hastelloy. Good wear resistance, notch wear resistance and thermal stability.	Milling

Uncoated cemented carbide

Grade	ISO	Micro structure	Grade description	
YD101	N05 - N20 K05 - K20		Uncoated N05–N20/K05–K20 carbide substrate for fine to medium application in aluminum and other material.	Drilling
YD201	N10 - N30 K10 - K30		Uncoated N10–N30/K10–K30 carbide substrate for medium application in aluminum and other material.	cal tion
CBN				Technic Informat
Grade	ISO	Micro structure	Grade description	

		Uncented brazed \$10, \$20 CPN grade for fine finishing energtions on bardened steels		
YCB112	S10 – S20	super alloys. Excellent wear resistance and thermal stability.		

С

Ε

General turning Grade overview

Λ	CBN	CBN						
A	Grade	ISO	Micro structure	Grade description				
Turning	YCB113	H01 - H10		Uncoated, brazed H01–H10 CBN grade for fine finishing operation in hardened steel with continuous cut. High wear resistance and productivity at higher cutting speed.				
В	YCB121	H10 - H25		Uncoated, brazed H10–H25 CBN grade for fine to medium application in hardened steel from continuous to light interrupted cut. Good wear resistance and toughness for universal use.				
Milling	YCB131	H20 - H35		Uncoated, brazed H20–H35 CBN grade for fine to medium application in hardened steel with interrupted cut. Good wear resistance and optimized toughness for safe process.				
C	YCB113C	H01 - H10		Coated, brazed H01–H10 CBN grade for fine finishing operations on hardened steel with a continuous cut. High wear resistance and productivity at higher cutting speeds				
Drilling	YCB121C	H10 - H25		Coated, brazed H10–H25 CBN grade for fine to medium machining operations on hardened steel with a continuous to partially interrupted cut. Good wear resistance and toughness for universal application.				
chnical rmation	YCB131C	H20 - H25		Coated, brazed H20–H35 CBN grade for fine to medium machining operations on hardened steel with an interrupted cut. Good wear resistance and optimum toughness for reliable operations.				
Tec Infoi	YCB215	K10 - K20		Uncoated, brazed K10 –K20 CBN grade for fine to medium machining operations on cast iron. Excellent wear resistance and thermal conductivity.				
Index	YZB630	H20 - H30		Uncoated H20–H30 solid CBN grade for medium machining operations on hardened steel with a slight to medium interrupted cut. Excellent combination of wear resistance and thermal stability.				

Α

Turning

В

Milling

С

Drilling

Index

С	B	N
~	-	

Grade	ISO	Micro structure	Grade description
YZB630C	H20 - H30		Coated H20–H30 solid CBN grade for medium machining operations on hardened steel with a slight to medium interrupted cut. Excellent combination of wear resistance and thermal stability.
YZB223	K10 - K25		Uncoated H10–H25/K10–K25 mixed ceramic grade for finishing to medium operation in hardened steel and nodular cast iron. Good wear resistance and toughness.

PCD

Grade	ISO	Micro structure	Grade description
YCD421	N01 - N10		Uncoated, brazed N01–N10 PCD grade for fine finishing operation of aluminum alloys less than 12 % Si, composites, copper/magnesium and other alloys. Medium grain size grade with good wear resistance for a wide application field.

Cermet

Grade	ISO	Micro structure	Grade description	
YNG151	P05 – P15		Uncoated P05–P15 cermet grade for fine finishing operation of steel and stainless steel. Good resistance against plastic deformation for good surface finishing.	D
YNG151C	P05 – P15		PVD coated P05–P15 cermet grade for fine finishing operation of steel and stainless steel. Good wear resistance and capability against plastic deformation for good surface roughness.	Technical Information
YNT251	P10 - P25		Uncoated P10–P25 cermet grade for fine finishing to medium operation of steel and stainless steel. Good wear resistance and toughness. Suitable also in light interrupted cut.	E

+f

Cermet grades for steel

С

Drilling

PVD coated carbide grades for stainless steel

CVD coated carbide grades for cast iron

Α

PVD coated carbide grades for superalloys

Technical Information

Turning

Milling

С

Drilling

D

Ceramic grades for nickel base alloys

CBN grades for superalloys

Carbide grades for non-ferrous metals

Α

С

Α

Turning

Β

Milling

С

Drilling

D

Technical Information

Ε

CBN grades for hardened steel

General turning Application fields of grades

										Α
	ISO	HC ¹ (CVD)	HC ¹ (PVD)	HT	HC ²	Ceramic	HW	CBN	PCD	
Ρ	P01 P10	212 212 212 212 212 212 212 212 212 212		I 1	G151C					Ď
	P20	VB60 VB60 VB6152 VB6152 VB6203 VB6203		YNT25	N/					Turnir
	P30	PBC355								
	P40									
	M01									В
	M10	123	/BG10 820 1205	NG15	VG151					
Μ	M20	YBM BM253	ABG ABG	×	5					
	M30									lling
	M40									Mi
	K01					000		5		
к	K10	3D102 3152 315 315				CN1		YCB21 B223		
	K20						YD201			C
	K30									
	N01									
NI	N10		101				0101		D421	rilling
IN	N20		YBG				YI YD201		۶,	
	N30									
S	S01							2		
	S10		YBS10: YBG102 /BG105 20			CS1000 00 00		YCB11 8131		U
	S20		YB93:			CW14 CW18		YC		
	S30									ical
	H01									echn
	H10							3113(C 21(C)		
п	H20							YCB1		
	H30							YCB1		E
Ρ		Steel	N Non-ferro	us metals		HC ¹ Coated c	arbide			
м		Stainless steel	S Heat-resis	tant alloys		HT Uncoated	d cermet			
K		Cast iron	H Hardened	materials		HW Uncoated	d carbide			×

Application fields of grades – general turning

Α

Δ	т	Ν	G	Α	12	04	08	Т	02	20	20	
	1	2	3	4	5	6	7	8	9	9	10	
бĽ		Insert shap	e		Clearar	nce angle			Tole	rance cla	SS	
Turnii	A 85°	B 82°	۰ د (A	B5°				↑ m ↓	- <s+< th=""><th></th></s+<>	
	D	• E 75°	• н				Code	e I.C [r	nm]	m [mn	n]	S [mm]
	`	\checkmark			C7°	D	A	±0,0)25	±0,00	5	±0,025
B	K 55°		M				C	±0,0)25	±0,01	3	±0,025
		-					E	±0,0)25	±0,02	5	±0,025
			^		E	F	F	±0,0) 13	±0,00	5	±0,025
	P	S	т				н	+0.0)13	+0.01	3	+0.025
ð				-				±0,05	-0,15	±0,00	5	±0,025
illi	V -135°	- W 80°	Z Spec	ial	G	N	К	±0,05	-0,15	±0,01	3	±0,025
Σ							L	±0,05	-0,15	±0,02	5	±0,025
							М	±0,05	-0,15	±0,08-0	,20	±0,130
					P	O Special	N	±0,05	-0,15	±0,08-0	,20	±0,025
							U	±0,08	-0,25	±0,13-0	,38	±0,130
C		1				2				3		
-]
		Fastening	g features (metric)			Cutting edge length I [mm]					
Ω		li	nsert shape						Insert	shape		
Ĕ				>6	5°	[mm]						
Drilli	A		В					 ⊢_ → D			V	W
Drilli	A	> 65°	В		1	3,97	 C	 D	⊢ → S	→ → T 06	V	 W
Drilli	A C	>65°	B			3,97 5,0	C		⊢ I → S	→ T 06	V	
Drilli	A C	> 65°	B		1	3,97 5,0 5,56	C	D	F → S	T 06 09	V	W
Drilli		≥ 65° ≤ 65°	B N W	≤6 	5° ₹ 1	3,97 5,0 5,56 6,0	C		S		V	W
Drill		> 65° < 65° < 65°	B N W	≤6 €	5° 7	3,97 5,0 5,56 6,0 6,35	C 06	<u>⊢</u> → D	S	09 11	11	- 대 W
D		> 65° ≤ 65° ≤ 65° → →	B N W	≤ 6	1.] 5° 1	3,97 5,0 5,56 6,0 6,35 8,0 9,525	06 09	07 11	<u></u>	09 11	11 16	 ₩
D	A C C C X Spe	$\leq 65^{\circ}$	B N W	≤6	1] 5° 7]	3,97 5,0 5,56 6,0 6,35 8,0 9,525 10,0	06 09	07 11	<u>-</u> 1 S	T 06 09 11 16	11 16	06
al Orilli	A C C D Q D X Spe	> 65° < 65° < 65° < 65° < 65° < 65° < 65°	B N W	≤6	1	3,97 5,0 5,56 6,0 6,35 8,0 9,525 10,0 12,0	06 09	07 11	S 09	T 06 09 11 16	11 16	06
nation D rilli	A C	≥ 65° ≤ 65°	B N W	<u>_</u> ≤6	1	3,97 5,0 5,56 6,0 6,35 8,0 9,525 10,0 12,0 12,7	06 09 12	07 11 15	09 12	T 06 09 11 16 22	11 16 22	06 08
echnical ormation	A C	≥ 65° ≤ 65° ecial	B N W	≤6 	1 5° 7	3,97 5,0 5,56 6,0 6,35 8,0 9,525 10,0 12,0 12,7 15,875	06 09 12 16	07 11 15	09 12 15	22 27	111 16 22	06 08
lechnical Information	A C	> 65° < 65° ecial	B N W	≤6	1 	3,97 5,0 5,56 6,0 6,35 8,0 9,525 10,0 12,0 12,7 15,875 16,0	06 09 12 16	07 11 15 19	09 12 15	T 06 09 11 16 22 27	11 16 22	06 08
Information D	A C	$\leq 65^{\circ}$	В W	<u>_</u> ≤6	1 5° 1	3,97 5,0 5,56 6,0 6,35 8,0 9,525 10,0 12,0 12,7 15,875 16,0 19,05	 C 06 09 12 16 	07 11 15 19	09 12 15 19	22 27 33	11 16 22	06 08
Information D rilli	A C	≥ 65° ≤ 65° ecial	B N W	≤6	1 5° 7	3,97 5,0 5,56 6,0 6,35 8,0 9,525 10,0 12,0 12,7 15,875 16,0 19,05 20,0	06 09 12 16 19	07 11 15 19	09 12 15 19	Image: T 06 09 11 16 22 27 33	11 16 22	06 08
Information D rilli	A C	> 65° < 65° < 65° < 65° < 65°	B N W	≤6	1	3,97 5,0 5,56 6,0 6,35 8,0 9,525 10,0 12,7 15,875 16,0 19,05 20,0 25,0	 C 06 09 12 16 19 25	D 07 11 15 19 25	09 12 15 19	T 06 09 11 16 22 27 33	11 16 22	06 08
B Information	A C	≥ 65° ≤ 65°	B N W	<u>≤</u> 6	1.] 5° ₹	3,97 5,0 5,56 6,0 6,35 8,0 9,525 10,0 12,0 12,7 15,875 16,0 19,05 20,0 25,0 25,4		D 07 11 15 19 25	 5 09 12 15 19 25	22 27 33	11 16 22	06 08
Information D	A C	≥ 65° ≤ 65° ecial	B W	≤6	1 5° 7	3,97 5,0 5,56 6,0 6,35 8,0 9,525 10,0 12,0 12,7 15,875 16,0 19,05 20,0 25,0 25,4 31,75	 C 06 09 12 16 19 25	D 07 11 15 19 25	09 12 15 19 25	22 27 33	111 16 222	06 08
B Information	A C Q X Spe	≥ 65° ≤ 65° ⇒ cial	B W	<u>≤</u> 6	1 5° 1	3,97 5,0 5,56 6,0 6,35 8,0 9,525 10,0 12,0 12,7 15,875 16,0 19,05 20,0 25,0 25,4 31,75 32	C 06 09 12 16 19 25	D 07 11 15 19 25	09 12 15 19 25	T 06 09 11 16 22 27 33	11 16 22	06 08

	Insert thick	ness S [r	nm]	Nose radius r [mm]			
	s I	s t			r		
Code	S	Code	S	Code	r		
02	2,38	06	6,35	00	-		
T2	2,58	T6	6,75	02	0,2		
03	3,18	07	7,94	04	0,4		
Т3	3,97	09	9,52	08	0,8		
04	4,76	T9	9,72	12	1,2		
T4	4,96	11	11,11	16	1,6		
05	5,56	12	12,70	20	2,0		
T5	5,95			24	2,4		
				32	3,2		
				Х	Special		
				MO	Plaquettes rondes		
		б			7		

	Cutting edge	Chamfer width b [mm]			
Code	Cutting edge	Insert shape		b	
E	Rounding				
			Code	b	
			010	0,10	
			015	0,15	
F	Sharp edge	<u> ////////////////////////////////////</u>	020	0,20	
			025	0,25	
	Chamfer		030	0,30	
т		1///////	035	0,35	
			040	0,40	
			045	0,45	
	Chamfer + Rounding		050	0,50	
S			100	1,00	
			200	2,00	
	8			9	

Angle du chanfrein α						
Code	α					
05	5°					
10	10°					
15	15°					
20	20°					
25	25°					
30	30°					

10

Technical Information

Α

Turning

В

Milling

С

Drilling