HSS

COMBO TAPS

TQ744 SERIES
TB744 SERIES

THREAD MILLS

SYNCHRO TAPS

> COMBO TAPS

YG TAP GENERAL

> YG TAP STEEL

YG TAP HARDENED

YG TAP

YG TAP CAST IRON

INOX

YG TAP ALU

YG TAP Ti Ni

YG TAP FORMING

NUT TAPS

STI TAPS

PIPE TAPS

TECHNICAL

ISO Metric coarse threads DIN 13

Metrisches ISO-Gewinde DIN 13

- () ISO MÉTRIQUE DIN13
- () ISO Metrico passo grosso DIN 13
- ► For stainless steels and correct thread profiles & long tool life due to special tap geometry. YG-1 company has a patent.

► Für rostfreie stähle, genaue Gewindeprofile und lange Standzeitendank einer besonderen Schneidengeometrie. Von YG-1 patentiert.

Material groups

DIN 371

DIN 376

up to M12

HSS-E

DIN 371/376

IN /376 6H

ØD1

Recommended Cutting Page: P.116

Unit · mm

SIZE	Pitch	EDP No.	Thread Length	Overall Length	Neck Length	Shank Diameter	Square Size	Square Length	No. of Flute	Tapping Drill Diameter
ØD1	Р	Vap	L1	L2	L3	ØD2	K	KI	Z	Ød1
M2 :	× 0.4	TQ744136	8	45	13	2.8	2.1	5	2	1.6
M2.2	× 0.45	TQ744156	8	45	13	2.8	2.1	5	2	1.75
M2.3	× 0.4	TQ744196	8	45	13	2.8	2.1	5	2	1.9
M2.5	× 0.45	TQ744176	9	50	15	2.8	2.1	5	2	2.05
M2.6	× 0.45	TQ744496	9	50	15	2.8	2.1	5	2	2.1
M3 :	× 0.5	TQ744206	6	56	18	3.5	2.7	6	3	2.5
M3.5	× 0.6	TQ744226	7	56	20	4	3	6	3	2.9
M4	× 0.7	TQ744246	7	63	21	4.5	3.4	6	3	3.3
M4.5	× 0.75	TQ744266	8	70	25	6	4.9	8	3	3.7
M5 :	× 0.8	TQ744286	8	70	25	6	4.9	8	3	4.2
M6	× 1	TQ744316	10	80	30	6	4.9	8	3	5
M7 :	× 1	TQ744346	10	80	30	7	5.5	8	3	6
M8	× 1.25	TQ744366	13	90	35	8	6.2	9	3	6.8
M9 :	× 1.25	TQ744396	13	90	35	9	7	10	3	7.8
M10	× 1.5	TQ744426	15	100	39	10	8	11	3	8.5
M11	× 1.5	TQ744466	17	100	40	8	6.2	9	3	9.5
M12	× 1.75	TQ744506	18	110	44	9	7	10	3	10.2
M14	× 2	TB744546	20	110	44	11	9	12	3	12
M16	× 2	TB744606	20	110	44	12	9	12	3	14
M18	× 2.5	TB744656	25	125	50	14	11	14	4	15.5
M20	× 2.5	TB744706	25	140	54	16	12	15	4	17.5
M22	× 2.5	TB744746	25	140	54	18	14.5	17	4	19.5
M24		TB744786	30	160	60	18	14.5	17	4	21
M27	× 3	TB744866	30	160	60	20	16	19	4	24
M30	× 3.5	TB744946	35	180	70	22	18	21	4	26.5

- ▶DIN 371(M2~M10) and DIN 376(M11~M30)
- ▶HSS-PM(M2~M12/TQ744) and HSS-E(M14~M30/TB744)
- * Coating(TiN, TiCN or TiAIN) is available on your request.

○: Good

ISO	P													M					K		
Material Description	Non-alloy steel						Low alloy steel				gh alloyed steel, and tool steel Stainless steel			el	Grey cas	Nodular cast iron			Malleable cast iron		
VDI 3323	1	2	3	4	5	6	7	8	9	10				13	14	15	16	17	18	19	20
HRc		13	25	28	32	10	29	32	38	15				23	10	10	26	3	25		21
HB	125	190	250	270	300	180	275	300	350	20	0 32	5 2	200 2	240	180	180	260	160	250	130	230
Recommended		0		0		0	0						0	0	0						
	N																				
ISO					N									S						Н	
ISO Material Description	Alum		Aluminu	ım-cast,	-	Copper a	nd Coppe nze / Bras		Non Me Materi		He	eat Res	istant Su		iys	Titaniu	m Alloys	Hard ste		Chilled	Hardened Cast Iron
Material			Aluminu 23	ım-cast, 24	-	Copper a					He	eat Res	33	iper Allo	ys 35	Titaniui 36	m Alloys 37			Chilled	Cast Iron 41
Material Description	wrougl 21	nt alloy 22	23	24	alloyed (25	Copper a (Bro 26	nze / Bras 27	28	Mater	ials	31 15	32 30	33 25	iper Allo	35 34	36	37	38 55	39 60	Chilled Cast Iron 40 42	Cast Iron 41 55
Material Description VDI 3323	wrougl	nt alloy			alloyed (Copper a (Bro	nze / Bra	ss)	Mater	ials	31	32	33	iper Allo	35	36	37	38 55	eel 39	Chilled Cast Iron 40	Cast Iron 41

HSS

RECOMMENDED CUTTING CONDITIONS EMPFOHLENE SCHNEIDKONDITIONEN

THREAD MILLS

SYNCHRO TAPS

> COMBO TAPS

YG TAP GENERAL

> YG TAP STEEL

YG TAP HARDENED

> YG TAP INOX

YG TAP CAST IRON

YG TAP ALU

YG TAP Ti Ni

YG TAP FORMING

NUT TAPS

STI TAPS

PIPE TAPS

TECHNICAL DATA

					TB744 TB754 TQ744 TQ754	TC814 TC854 TC834 TC874	TD814 TD854 TD834 TD874	TB814 TB854 TB834 TB874	TCJ05 TCJ09 TCJ01 TCJ02	TDJ05 TDJ09 TDJ01 TDJ02	TBJ05	TCJ06
ISO	VDI 3323	Material Description	НВ	HRc				Vc (m	/min)			
	1		125			15-20	20-25	15-20	15-20	20-25	15-20	15-20
	2		190	13	15-20	15-20	20-25	15-20	15-20	20-25	15-20	15-20
	3	Non-alloy steel	250	25		12-18	18-24	12-18	12-18	18-24	12-18	12-18
	4		270	28	10-15	10-15	15-20	10-15	10-15	15-20	10-15	10-15
	5		300	32		6-10	10-14	6-10	6-10	10-14	6-10	6-10
P	6		180	10	10-15	10-15	15-20	10-15	10-15	15-20	10-15	10-15
	7	Low alloy steel	275	29	10-15	10-15	15-20	10-15	10-15	15-20	10-15	10-15
	8		300	32		6-10	10-14	6-10	6-10	10-14	6-10	6-10
	9		350	38		3-5	5-7	3-5	3-5	5-7	3-5	3-5
	10	High alloyed steel,	200	15		3-5	5-7	3-5	3-5	5-7	3-5	3-5
	11	and tool steel	325	35								
	12		200	15	7-10	7-10	10-15	7-10	7-10	10-15	7-10	7-10
M	13	Stainless steel	240	23	5-8	5-8	8-11	5-8	5-8	8-11	5-8	5-8
	14		180	10	4-6	4-6	6-8	4-6	4-6	6-8	4-6	4-6
	15	Grey cast iron	180	10		10-15	15-20	10-15	10-15	15-20	10-15	10-15
	16		260	26		5-8	8-11	5-8	5-8	8-11	5-8	5-8
K	17	Nodular cast iron	160	3		10-15	15-20	10-15	10-15	15-20	10-15	10-15
	18		250	25		5-8	8-11	5-8	5-8	8-11	5-8	5-8
	19	Malleable cast iron	130									
	20		230	21								
		Aluminum-	60									
	22	wrought alloy	100									
	23	Aluminum-	75			15-20	20-25	15-20	15-20	20-25	15-20	15-20
		cast, alloyed	90									
N	25		130									
		Copper and	110			25-35	35-40	25-35	25-35	35-40	25-35	25-35
	27	Copper Alloys (Bronze / Brass)	90			8-12	12-17	8-12	8-12	12-17	8-12	8-12
	28	(=153,25, =1555,	100		15-20	15-20	20-25	15-20	15-20	20-25	15-20	15-20
	29	Non Metallic Materials										
	30	iviateriais	222									
	31		200	15								
	32	Heat Resistant	280	30								
6	33	Super Alloys	250	25								
S	34		350	38								
	35		320	34								
	36	Titanium Alloys	400 Rm									
	37		1050 Rm	_								
	38	Hardened steel	550	55								
Н	39		630	60								
	40	Chilled Cast Iron	400	42								
	41	Hardened Cast Iron	550	55								

SURFACE TREATMENT AND COATING

The applied High Speed Steels holds a grant of good wear resistance and toughness. Therefore YG-1 normally delivers taps with bright and unfinished surface. For certain materials, various surface treatments provide higher advantage in machining.

STEAM TEMPERED - Vap

Steam Tempered is a Fe3O4-oxyd-coating which reduces friction between the tool and workpiece, also preventing cold welding.

NITRIDING - NI

Recommend surface treatment for machining materials that affect wear abrasion, such as grey cast iron, alu-alloys with high Si-percentages (more than 10%).

Below are the various surface treatments for excellent finish surfaces suitable for many applications. The surface treatments are produced and developed within the company.

TIN-COATING

TiN-coating yields a hardness of approx. 2,300 HV and also a heat resistant up to approx. 600°C. The current coating is an excellent all-round coating for normal applications.

Colour: Golden Coefficient of friction against steel: 0.4

TICN-COATING

TiCN takes place of TiN when the conditions require the coating to have a different hardness and toughness.

The TiCN brings advantages for machining very difficult steels or cutting interrupted bores

The TiCN-coating has a hardness of approx. 3,000 HV, but is heat resistance only holds up to approx. 400°C, meaning that the TiCN needs an excellent cooling system for a long service life.

Colour: Blue-Grey Coefficient of friction against steel: 0.4

TIAIN-COATING

A special coating for machining abrasive materials such as grey cast iron, alu-alloys with silicon, fiber reinforced plastics, etc., or machining at high temperatures with insufficient cooling, or at high speeds \geq 600m/min. TiAIN has a hardness of approx. 3.000 HV and is heat resistant up to approx. 800°C.

Colour: Violet-Grey Coefficient of friction against steel: 0.4

Hardslick-COATING

Hardslick combines the advantages of an extremely hard, thermally stable TiAIN-coating with the sliding and lubricating properties of an outer WC/C(Tungsten carbide/carbon)-coating in a novel way. The Hardslick coating has a hardness of approx. 3,000 HV and is temperature-resistant up to approx. 800°C.

Colour: Violet-Grey Coefficient of friction against steel: 0.2

HSS

THREAD

SYNCHRO

COMBO TAPS

YG TAP **GENERAL**

YG TAP

YG TAP

YG TAP INOX

YG TAP

Please visit

globalyg1.com/mat

for material search

Non-alloy steel

Low alloy steel

High alloyed steel, and tool steel

Stainless steel

Grey cast iron

Nodular cast iron

Malleable cast iron

Aluminum-

wrought alloy

Aluminum-

cast, alloyed

Copper and Copper Alloys

(Bronze / Brass)

Non Metallic Materials

Heat Resistant

Super Alloys

Titanium Alloys

Hardened steel

Chilled Cast Iron

Hardened Cast Iron

YG TAP

YG TAP Ti Ni

P

M 13

K

N

S

38

39

12

14

16

18

20

YG TAP

NUT TAPS

TECHNICAL

SELECTION GUIDE

HSS-E & HSS-PI COMBO

Hardened

550

55

						Max. 2.5xD Blind Hole							
G	JUIDE			HOLE:	TYPE								
			-	TOOL MA	ATERIAL	HSS-E							
	THREADIN	NG	CHAM	MFER LEAD A	ACC. TO DIN2197	С	С	С	С	С	С		
		NG		FLUTE	TYPE	Spiral Flute	Spiral Flute	Spiral Flute	Spiral Flute	Spiral Flute	Spiral Flute		
	TOOLS		SP	IRAL FLU	JTE ANGLE	R40	R40	R40	R40	R40	R40		
					DIN371/376	TC804	TD804	TB804	TCE05	TDE05	TBE05		
						(P.76)	(P.76)	(P.76)	(P.77)	(P.77)	(P.77)		
10	S-E & H	CC DM		M	DIN352								
D	3-E & N	33-PIVI			DIN357/LONG								
					DIN374	TC844 (P.81)	TD844 (P.81)	TB844 (P.81)	TCE09 (P.83)	TDE09 (P.83)			
		VIBO		MF	DIN2181	(r.o1)	(r.o1)	(r.o1)	(r.os)	(r.os)			
						TC824	TD824	TB824	TCE01	TDE01			
	-			UNC	DIN371/376	(P.91)	(P.91)	(P.91)	(P.92)	(P.92)			
		APS	is		DIN351								
			SERIES		DIN371/374	TC864 (P.93)	TD864 (P.93)	TB864 (P.93)	TCE02 (P.94)	TDE02 (P.94)			
	For Multi P	urpose Tapping	S	UNF	DIN2181	(1.23)	(1.23)	(1.55)	(1.24)	(1.54)			
		YG-1's Patent			DIN2182/2183								
				BSW									
					DIN351								
				G(BSP)	DIN5156/5157								
				EG-M	DIN371/376								
				EG-UNC	DIN371/376								
				EG-UNF	DIN371/374								
			SL	IRFACE T	REATMENT	Bright	TiN	VAP	Bright	TiN	VAP		
R	© ecommended cutting		МО	DEL									
otion	Composition / Struct	ure / Heat Treatment		НВ	HRC		4	4			4		
	About 0.15% C	Annealed		125		0	0	0	0	0	0		
	About 0.45% C	Annealed		190	13	0	0	0	0	0	0		
eel	About 0.45% C	Quenched & Tempered		250	25	0	0	0	0	0	0		
	About 0.75% C	Annealed		270	28	0	0	0	0	0	0		
	About 0.75% C	Quenched & Tempered Annealed		300 180	32 10	0	0	0	0	0	© ©		
		Quenched & Tempered		275	29	0	0	0	0	0	0		
eel		Quenched & Tempered		300	32	0	0	0	0	0	0		
		Quenched & Tempered		350	38	0	0	0	0	0	0		
teel,		Annealed		200	15	0	0	0	0	0	0		
el		Quenched & Tempered		325	35								
	Ferritic / Martensitic	Annealed		200	15	0	0	0	0	0	0		
el	Martensitic	Quenched & Tempered		240	23	0	0	0	0	0	0		
	Austenitic			180	10	0	0	0	0	0	0		
on	Pearlitic / ferritic			180	10	0	0	0	0	0	0		
,,,	Pearlitic (Martensitic)			260	26	0	0	0	0	0	0		
iron	Ferritic			160	3	0	0	0	0	0	0		
	Pearlitic			250	25	0	0	0	0	0	0		
iron	Ferritic			130	21								
	Pearlitic			230	21								
- oy	Not Curable Curable	Hardened		60 100									
Оу	≤ 12% Si, Not Curable			75		0	0	0	0	0	0		
-	≤ 12% Si, Not Carable	Hardened		90									
d	> 12% Si, Not Curable			130									
d	Cutting Alloys, PB>1%			110		0	0	0	0	0	0		
ys	CuZn, CuSnZn (Brass)			90		0	0	0	0	0	0		
iss)	CuSn, lead-free copper	and electrolytic copper		100		0	0	0	0	0	0		
ic	Duroplastic, Fiber Rein	nforced Plastic											
	Rubber, Wood, etc.												
	Fe Based	Annealed		200	15								
nt	. c buscu	Cured		280	30								
/S		Annealed		250	25								
	Ni or Co Based	Cured		350	38								
	D T:	Cast		320	34								
oys	Pure Titanium	Handan I		0 Rm									
	Alpha + Beta Alloys	Hardened		50 Rm	FF								
eel		Hardened		550	55								
ron		Hardened Cast		630 400	60 42								
ron		Cast		100	42								

							Max. 2.5xD Blind Hole							_
	I	I	I	I	I	HSS-E	I		I	I		I	HSS-PM	
C	C	C	C	C	C	C	C	C	C	C	E	C	C	
Spiral Flute	Spiral Flute	Spiral Flute	Spiral Flute	Spiral Flute	Spiral Flute	Spiral Flute								
TCE06	R40 TDE06	R40 TBE06	TCE07	R40 TDE07	R40 TBE07	TCE08	R40 TDE08	R40 TBE08	R40 TC804-IC	R40	R40 TC807	R45 TB744	R45 TQ744	
(P.78)	(P.78)	(P.78)	(P.79)	(P.79)	(P.79)	(P.80)	(P.80)	(P.80)	(P.85)		(P.86)	(P.88)	(P.88)	
										TCC22				M
										TC633 (P.87)				
												TB754 (P.90)	TQ754 (P.89)	MF
														.,,,
														UNC
														UNF
														BSW
														G(BSP)
														EG-M
														EG-UNC
														EG-UNF
Bright	TiN	VAP	Bright	TiN	VAP	Bright	TiN	VAP	Bright	Bright	Bright	VAP	VAP	
1						1					1			
		1										1	1	
		7			7			7	(条					
We k						Wa.				W				
										1 /				
														1
O	0	0	0	0	0	0	0	0	0	0	0	0	0	2
0	0	0	0	0	0	0	0	0	0	0	0			3
0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
0	0	0	0	0	0	0	0	0	0	0	0			5 P
0	0	0	0	0	0	© ©	0	© ©	0	0	© ©	0	0	7
0	0	0	0	0	0	0	0	0	0	0	0		0	8
0	0	0	0	0	0	0	0	0	0	0	0			9
0	0	0	0	0	0	0	0	0	0	0	0			10 11
0	0	0	0	0	0	0	0	0	0	0	0	0	0	12
0	0	0	0	0	0	0	0	0	0	0	0	0	0	13 M
0	0	0	0	0	0	0	0	0	0	0	0	0	0	14
0	0	0	0	0	0	0	0	0	0	0	0			15 16
0	© ©	0	0	0	© ©	© ©	0	© ©	0	0	© ©			17
0	0	0	0	0	0	0	0	0	0	0	0			17 18 K
														19
														20
														22
0	0	0	0	0	0	0	0	0	0	0	0			23
														19 20 21 22 23 24 25 26 27 28 29 30
0	0	0	0	0	0	0	0	0	0	0	0			25 N
0	0	0	0	0	0	0	0	0	0	0	0			27
0	0	0	0	0	0	0	0	0	0	0	0	0	0	28
														29
														31
														32
														33
														34 S 35
														36
														37
														39 40 H
														38 39 40 41
						,								