COMBO TAPS

TB754 SERIES

THREAD MILLS

SYNCHRO TAPS

COMBO TAPS

YG TAP **GENERAL**

YG TAP

YG TAP HARDENED

YG TAP INOX

YG TAP CAST

YG TAP ALU

YG TAP Ti Ni

YG TAP FORMING

NUT TAPS

STITAPS

PIPE TAPS

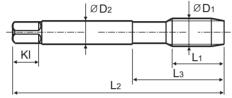
TECHNICAL DATA

ISO Metric fine threads DIN 13

Metrisches ISO-Feingewinde DIN 13
 ISO MÉTRIQUE PAS FINS DIN13

- () ISO Metrico passo fine DIN 13
- ▶ For stainless steels and correct thread profiles & long tool life due to special tap geometry. YG-1 company has a patent.

► Für rostfreie stähle, genaue Gewindeprofile und lange Standzeitendank einer besonderen Schneidengeometrie. Von YG-1 patentiert.



DIN 374

Machine taps Maschinengewindebohrer

Percommended Cutting Page: P.116

R	Recommended Cutting Page: P.116 Unit: mm													
	SIZE	Pitch	EDP No.	Thread Length	Overall Length	Neck Length	Shank Diameter	Square Size	Square Length	No. of Flute	Tapping Drill Diameter			
	ØD1	Р	Vap	L1	L2	L3	ØD2	K	KI	Z	Ød1			
	M14 ×	1.5	TB754556	15	100	40	11	9	12	3	12.5			
	M14 ×	1.25	TB754566	15	100	40	11	9	12	3	12.8			
	M14 ×	۲ 1	TB754576	11	100	40	11	9	12	3	13			
	M16 ×	< 1.5	TB754616	15	100	40	12	9	12	3	14.5			
	M16 ×	< 1	TB754626	12	100	40	12	9	12	3	15			
	M18 ×	< 1.5	TB754676	17	110	44	14	11	14	4	16.5			
	M18 ×	1	TB754686	13	110	44	14	11	14	4	17			
	M20 ×	1.5	TB754726	17	125	50	16	12	15	4	18.5			
	M20 ×	< 1	TB754736	14	125	50	16	12	15	4	19			
	M22 ×	< 1.5	TB754766	17	125	50	18	14.5	17	4	20.5			
	M22 ×	1	TB754776	14	125	50	18	14.5	17	4	21			
	M24 ×	< 2	TB754796	20	140	54	18	14.5	17	4	22			
	M24 ×	< 1.5	TB754806	20	140	54	18	14.5	17	4	22.5			
	M26 ×	< 1.5	TB754856	20	140	54	18	14.5	17	4	24.5			
	M27 ×	< 2	TB754876	20	140	54	20	16	19	4	25			
	M27 ×	1.5	TB754886	20	140	54	20	16	19	4	25.5			
	M28 ×	1.5	TB754916	20	140	54	20	16	19	4	26.5			
	M30 ×	< 2	TB754966	22	150	57	22	18	21	4	28			
	M30 ×	1.5	TB754976	22	150	57	22	18	21	4	28.5			

^{*} Coating(TiN, TiCN or TiAlN) is available on your request.

																		():Exc	cellent (⊃:Good
ISO	P										M										
Material Description	Non-alloy steel					Low alloy steel				High alloyed steel, and tool steel			Stainless steel			Grey cast iron		Nodular cast iron		able cast iron	
VDI 3323	1	2	3	4	5	6	7	8	9		10	11	12	13	14	15	16	17	18		20
HRc		13	25	28	32	10	29	32	38			35	15	23	10	10	26	3	25		21
HB	125	190	250	270	300	180	275	300	350) 2	00 :	325	200	240	180	180	260	160	250	130	230
Recommended		0		0		0	0						0	0	0						
ISO					l l										S					Н	
Material Description	Alum	inum- ht alloy	Aluminu	um-cast,	alloyed	Copper a	ind Copp inze / Bra		Non M Mate		- 1	Heat R	esistant	Super	Alloys	Titan	ium Alloy		dened teel		Hardened Cast Iron
VDI 3323	21	22	23	24	25	26	27	28	29	30	31	32	33	3	34 35	36	37	38	39	40	41
HRc											15	30	25	3	34			55	60	42	55
HB	60	100	75	90	130	110	90	100			200	280) 25	0 3	50 32	0 400F	m 1050F	m 550	630	400	550
Recommended								\sim													

HSS

RECOMMENDED CUTTING CONDITIONS EMPFOHLENE SCHNEIDKONDITIONEN

THREAD MILLS

SYNCHRO TAPS

> COMBO TAPS

YG TAP GENERAL

> YG TAP STEEL

YG TAP HARDENED

> YG TAP INOX

YG TAP CAST IRON

YG TAP ALU

YG TAP Ti Ni

YG TAP FORMING

NUT TAPS

STI TAPS

PIPE TAPS

TECHNICAL DATA

					TB744 TB754 TQ744 TQ754	TC814 TC854 TC834 TC874	TD814 TD854 TD834 TD874	TB814 TB854 TB834 TB874	TCJ05 TCJ09 TCJ01 TCJ02	TDJ05 TDJ09 TDJ01 TDJ02	TBJ05	TCJ06
ISO	VDI 3323	Material Description	НВ	HRc				Vc (m	/min)			
	1		125			15-20	20-25	15-20	15-20	20-25	15-20	15-20
	2		190	13	15-20	15-20	20-25	15-20	15-20	20-25	15-20	15-20
	3	Non-alloy steel	250	25		12-18	18-24	12-18	12-18	18-24	12-18	12-18
	4		270	28	10-15	10-15	15-20	10-15	10-15	15-20	10-15	10-15
	5		300	32		6-10	10-14	6-10	6-10	10-14	6-10	6-10
P	6		180	10	10-15	10-15	15-20	10-15	10-15	15-20	10-15	10-15
	7	Low alloy steel	275	29	10-15	10-15	15-20	10-15	10-15	15-20	10-15	10-15
	8		300	32		6-10	10-14	6-10	6-10	10-14	6-10	6-10
	9		350	38		3-5	5-7	3-5	3-5	5-7	3-5	3-5
	10	High alloyed steel,	200	15		3-5	5-7	3-5	3-5	5-7	3-5	3-5
	11	and tool steel	325	35								
М	12		200	15	7-10	7-10	10-15	7-10	7-10	10-15	7-10	7-10
	13	Stainless steel	240	23	5-8	5-8	8-11	5-8	5-8	8-11	5-8	5-8
	14		180	10	4-6	4-6	6-8	4-6	4-6	6-8	4-6	4-6
	15	Grey cast iron	180	10		10-15	15-20	10-15	10-15	15-20	10-15	10-15
	16	,	260	26		5-8	8-11	5-8	5-8	8-11	5-8	5-8
K	17	Nodular cast iron	160	3		10-15	15-20	10-15	10-15	15-20	10-15	10-15
•	18		250	25		5-8	8-11	5-8	5-8	8-11	5-8	5-8
	19	Malleable cast iron	130									
	20	maneable east non	230	21								
		Aluminum-	60									
	22	wrought alloy	100									
	23		75			15-20	20-25	15-20	15-20	20-25	15-20	15-20
		Aluminum- cast, alloyed	90									
N	25		130									
		Copper and	110			25-35	35-40	25-35	25-35	35-40	25-35	25-35
	27	Copper Alloys	90			8-12	12-17	8-12	8-12	12-17	8-12	8-12
	28	(Bronze / Brass)	100		15-20	15-20	20-25	15-20	15-20	20-25	15-20	15-20
	29	Non Metallic										
	30	Materials										
	31		200	15								
	32	Heat Resistant	280	30								
	33	Super Alloys	250	25								
S	34		350	38								
	35		320	34								
	36	Titanium Alloys	400 Rm									
	37		1050 Rm									
	38	Hardened steel	550	55								
н	39	. a. acrica steel	630	60								
	40	Chilled Cast Iron	400	42								
	41	Hardened Cast Iron	550	55								

SURFACE TREATMENT AND COATING

The applied High Speed Steels holds a grant of good wear resistance and toughness. Therefore YG-1 normally delivers taps with bright and unfinished surface. For certain materials, various surface treatments provide higher advantage in machining.

STEAM TEMPERED - Vap

Steam Tempered is a Fe3O4-oxyd-coating which reduces friction between the tool and workpiece, also preventing cold welding.

NITRIDING - NI

Recommend surface treatment for machining materials that affect wear abrasion, such as grey cast iron, alu-alloys with high Si-percentages (more than 10%).

Below are the various surface treatments for excellent finish surfaces suitable for many applications. The surface treatments are produced and developed within the company.

TIN-COATING

TiN-coating yields a hardness of approx. 2,300 HV and also a heat resistant up to approx. 600°C. The current coating is an excellent all-round coating for normal applications.

Colour: Golden Coefficient of friction against steel: 0.4

TICN-COATING

TiCN takes place of TiN when the conditions require the coating to have a different hardness and toughness.

The TiCN brings advantages for machining very difficult steels or cutting interrupted bores

The TiCN-coating has a hardness of approx. 3,000 HV, but is heat resistance only holds up to approx. 400°C, meaning that the TiCN needs an excellent cooling system for a long service life.

Colour: Blue-Grey Coefficient of friction against steel: 0.4

TIAIN-COATING

A special coating for machining abrasive materials such as grey cast iron, alu-alloys with silicon, fiber reinforced plastics, etc., or machining at high temperatures with insufficient cooling, or at high speeds \geq 600m/min. TiAIN has a hardness of approx. 3.000 HV and is heat resistant up to approx. 800°C.

Colour: Violet-Grey Coefficient of friction against steel: 0.4

Hardslick-COATING

Hardslick combines the advantages of an extremely hard, thermally stable TiAIN-coating with the sliding and lubricating properties of an outer WC/C(Tungsten carbide/carbon)-coating in a novel way. The Hardslick coating has a hardness of approx. 3,000 HV and is temperature-resistant up to approx. 800°C.

Colour: Violet-Grey Coefficient of friction against steel: 0.2

HSS

THREAD

SYNCHRO

COMBO TAPS

YG TAP **GENERAL**

YG TAP

YG TAP

YG TAP INOX

YG TAP

Please visit

globalyg1.com/mat

for material search

Non-alloy steel

Low alloy steel

High alloyed steel, and tool steel

Stainless steel

Grey cast iron

Nodular cast iron

Malleable cast iron

Aluminum-

wrought alloy

Aluminum-

cast, alloyed

Copper and Copper Alloys

(Bronze / Brass)

Non Metallic Materials

Heat Resistant

Super Alloys

Titanium Alloys

Hardened steel

Chilled Cast Iron

Hardened Cast Iron

YG TAP

YG TAP Ti Ni

P

M 13

K

N

S

38

39

12

14

16

18

20

YG TAP

NUT TAPS

TECHNICAL

SELECTION GUIDE

HSS-E & HSS-PI COMBO

Hardened

550

55

									M 25 D					
I GUIDE				HOLE.	ТҮРЕ	Max. 2.5xD Blind Hole								
			-	TOOL MA	ATERIAL	HSS-E								
	THREADIN	NC.	CHAM	MFER LEAD A	ACC. TO DIN2197	С	С	С	С	С	С			
	THREADIN	NG		FLUTE	TYPE	Spiral Flute	Spiral Flute	Spiral Flute	Spiral Flute	Spiral Flute	Spiral Flute			
	TOOLS		SP	IRAL FLU	JTE ANGLE	R40	R40	R40	R40	R40	R40			
					DIN371/376	TC804	TD804	TB804	TCE05	TDE05	TBE05			
						(P.76)	(P.76)	(P.76)	(P.77)	(P.77)	(P.77)			
C	CEQU	CC DM		M	DIN352									
J	S-E & H	33-PIVI			DIN357/LONG									
					DIN374	TC844 (P.81)	TD844 (P.81)	TB844 (P.81)	TCE09 (P.83)	TDE09 (P.83)				
		VIBO		MF	DIN2181	(r.o1)	(r.o1)	(r.o1)	(r.os)	(r.os)				
						TC824	TD824	TB824	TCE01	TDE01				
	-			UNC	DIN371/376	(P.91)	(P.91)	(P.91)	(P.92)	(P.92)				
		APS	is		DIN351									
			SERIES		DIN371/374	TC864 (P.93)	TD864 (P.93)	TB864 (P.93)	TCE02 (P.94)	TDE02 (P.94)				
	For Multi P	urpose Tapping	S	UNF	DIN2181	(1.23)	(1.23)	(1.23)	(1.24)	(1.54)				
		YG-1's Patent			DIN2182/2183									
				BSW										
					DIN351									
				G(BSP)	DIN5156/5157									
				EG-M	DIN371/376									
				EG-UNC	DIN371/376									
				EG-UNF	DIN371/374									
			SL	IRFACE T	REATMENT	Bright	TiN	VAP	Bright	TiN	VAP			
R	© ecommended cutting	MODEL												
otion	Composition / Struct	ure / Heat Treatment		НВ	HRC		4	6		4	4			
	About 0.15% C	Annealed		125		0	0	0	0	0	0			
	About 0.45% C	Annealed		190	13	0	0	0	0	0	0			
eel	About 0.45% C	Quenched & Tempered		250	25	0	0	0	0	0	0			
	About 0.75% C	Annealed		270	28	0	0	0	0	0	0			
	About 0.75% C	Quenched & Tempered Annealed		300 180	32 10	© ©	0	0	0	0	0			
		Quenched & Tempered		275	29	0	0	0	0	0	0			
eel		Quenched & Tempered		300	32	0	0	0	0	0	0			
		Quenched & Tempered		350	38	0	0	0	0	0	0			
teel,		Annealed		200	15	0	0	0	0	0	0			
el		Quenched & Tempered		325	35									
	Ferritic / Martensitic	Annealed		200	15	0	0	0	0	0	0			
el	Martensitic	Quenched & Tempered		240	23	0	0	0	0	0	0			
	Austenitic			180	10	0	0	0	0	0	0			
n	Pearlitic / ferritic			180	10	0	0	0	0	0	0			
,,,	Pearlitic (Martensitic)			260	26	0	0	0	0	0	0			
iron	Ferritic			160	3	0	0	0	0	0	0			
	Pearlitic			250	25	0	0	0	0	0	0			
iron	Ferritic			130	21									
	Pearlitic Not Curable			230 60	21									
- oy	Curable	Hardened		100										
٠,	≤ 12% Si, Not Curable			75		0	0	0	0	0	0			
-	≤ 12% Si, Curable	Hardened		90										
d	> 12% Si, Not Curable			130										
d	Cutting Alloys, PB>1%	6		110		0	0	0	0	0	0			
ys	CuZn, CuSnZn (Brass)			90		0	0	0	0	0	0			
ss)	CuSn, lead-free copper			100		0	0	0	0	0	0			
ic	Duroplastic, Fiber Reir	nforced Plastic												
	Rubber, Wood, etc.													
	Fe Based	Annealed		200	15									
nt		Cured		280	30									
rs	Ni ou Co Door I	Annealed		250	25									
	Ni or Co Based	Cured		350	38									
	Pure Titanium	Cast		320 00 Rm	34									
oys	Alpha + Beta Alloys	Hardened		50 Rm										
	Alpha i beta Alloys	Hardened		550 Kill	55									
eel		Hardened		630	60									
ron		Cast		400	42									

Max. 2.5xD Blind Hole														_
			I	I	I	HSS-E	I		I	I		I	HSS-PM	
C	C	C	C	C	C	C	C	C	C	C	E	C	C	
Spiral Flute	Spiral Flute	Spiral Flute	Spiral Flute	Spiral Flute	Spiral Flute	Spiral Flute	Spiral Flute	Spiral Flute	Spiral Flute	Spiral Flute	Spiral Flute	Spiral Flute	Spiral Flute	
TCE06	R40 TDE06	R40 TBE06	TCE07	R40 TDE07	R40 TBE07	TCE08	R40 TDE08	R40 TBE08	R40 TC804-IC	R40	R40 TC807	R45 TB744	R45 TQ744	
(P.78)	(P.78)	(P.78)	(P.79)	(P.79)	(P.79)	(P.80)	(P.80)	(P.80)	(P.85)		(P.86)	(P.88)	(P.88)	
										TCC22				M
										TC633 (P.87)				
												TB754 (P.90)	TQ754 (P.89)	MF
														UNC
														UNF
														BSW
														G(BSP)
														EG-M
														EG-UNC
														EG-UNF
Bright	TiN	VAP	Bright	TiN	VAP	Bright	TiN	VAP	Bright	Bright	Bright	VAP	VAP	
1						1					1			
		1										1	1	
	7				7			7	(条					
We k						Wa.				W				
										1				
														1
O	0	O	0	0	0	0	0	0	0	0	0	0	0	2
0	0	0	0	0	0	0	0	0	0	0	0			3
0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
0	0	0	0	0	0	0	0	0	0	0	0			5 P
0	© ©	© ©	0	0	0	© ©	0	© ©	0	0	0	0	0	7
0	0	0	0	0	0	0	0	0	0	0	0		0	8
0	0	0	0	0	0	0	0	0	0	0	0			9
0	0	0	0	0	0	0	0	0	0	0	0			10 11
0	0	0	0	0	0	0	0	0	0	0	0	0	0	12
0	0	0	0	0	0	0	0	0	0	0	0	0	0	13 M
0	0	0	0	0	0	0	0	0	0	0	0	0	0	14
0	0	0	0	0	0	0	0	0	0	0	0			15 16
0	© ©	© ©	© ©	0	© ©	© ©	0	© ©	0	0	0			17
0	0	0	0	0	0	0	0	0	0	0	0			17 18 K
														19
														20
														22
0	0	0	0	0	0	0	0	0	0	0	0			23
														20 21 22 23 24 25 26 27 28 29 30
0	0	0	0	0	0	0	0	0	0	0	0			25 N
0	0	0	0	0	0	0	0	0	0	0	0			27
0	0	0	0	0	0	0	0	0	0	0	0	0	0	28
														29
														31
														32
														33
														34 S 35
														36
														37
														39 40 H
														38 39 40 41